A vertex operator approach for correlation functions of Belavin's $(\mathbb{Z} / n \mathbb{Z})$-symmetric model

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2009 J. Phys. A: Math. Theor. 42165211
(http://iopscience.iop.org/1751-8121/42/16/165211)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.153
The article was downloaded on 03/06/2010 at 07:37

Please note that terms and conditions apply.

A vertex operator approach for correlation functions of Belavin's $(\mathbb{Z} / n \mathbb{Z})$-symmetric model

Yas-Hiro Quano
Department of Clinical Engineering, Suzuka University of Medical Science, Kishioka-cho, Suzuka 510-0293, Japan
E-mail: quanoy@suzuka-u.ac.jp

Received 2 December 2008, in final form 6 March 2009
Published 1 April 2009
Online at stacks.iop.org/JPhysA/42/165211

Abstract

Belavin's $(\mathbb{Z} / n \mathbb{Z})$-symmetric model is considered on the basis of bosonization of vertex operators in the $A_{n-1}^{(1)}$ model and vertex-face transformation. The corner transfer matrix (CTM) Hamiltonian of the ($\mathbb{Z} / n \mathbb{Z}$)-symmetric model and tail operators are expressed in terms of bosonized vertex operators in the $A_{n-1}^{(1)}$ model. Correlation functions of the $(\mathbb{Z} / n \mathbb{Z})$-symmetric model can be obtained by using these objects, in principle. In particular, we calculate spontaneous polarization, which reproduces the result we obtained in 1993.

PACS numbers: 02.30.Ik, 75.10.-b
Dedicated to Professor Tetsuji Miwa on the occasion of his 60th birthday

1. Introduction

In this paper we consider Belavin's $(\mathbb{Z} / n \mathbb{Z})$-symmetric model [1] on the basis of bosonization of vertex operators in the $A_{n-1}^{(1)}$ model [2] and vertex-face transformation. Belavin's $(\mathbb{Z} / n \mathbb{Z})$ symmetric model is a higher rank generalization of Baxter's eight-vertex model [3] in the sense that the former model is an n-state model. The $(\mathbb{Z} / n \mathbb{Z})$-symmetric model is a vertex model on a two-dimensional lattice such that the state variables take on values of $(\mathbb{Z} / n \mathbb{Z})$-spin. A local weight $R_{j l}^{i k}$ is assigned to spin configuration j, l, i, k around a vertex. The model is $(\mathbb{Z} / n \mathbb{Z})$ symmetric in a sense that $R_{j l}^{i k}$ satisfies the two conditions: (i) $R_{j l}^{i k}=0$ unless $j+l=i+k(\bmod$ n) and (ii) $R_{j+p l+p}^{i+p k+p}=R_{j l}^{i k}$ for any $p \in(\mathbb{Z} / n \mathbb{Z})$. Since there are n^{3} non-zero weights among $R_{j l}^{i k}$,s, we may call the $(\mathbb{Z} / n \mathbb{Z})$-symmetric model by the n^{3}-vertex model. (When $n=2$, it becomes the eight-vertex model.)

In [4], Lashkevich and Pugai presented the integral formulae for correlation functions of the eight-vertex model [3] using bosonization of vertex operators in the eight-vertex SOS model [5] and vertex-face transformation. The present paper aims to give an $s l(n)$-generalization of Lashkevich-Pugai's construction. For our purpose, we use the vertex-face correspondence
between the $(\mathbb{Z} / n \mathbb{Z})$-symmetric model and unrestricted $A_{n-1}^{(1)}$ model. First, we note that the $A_{n-1}^{(1)}$ model [6] is a restricted model, while we should relate the $(\mathbb{Z} / n \mathbb{Z})$-symmetric model to the unrestricted $A_{n-1}^{(1)}$ model. Second, we note that the original vertex-face correspondence [6] maps the $A_{n-1}^{(1)}$ model in regime III to the $(\mathbb{Z} / n \mathbb{Z})$-symmetric model in the disordered phase. We should relate the former to the $(\mathbb{Z} / n \mathbb{Z})$-symmetric model in the principal regime.

In this paper, we present integral formulae for correlation functions of the $(\mathbb{Z} / n \mathbb{Z})$ symmetric model on the basis of the free field representation formalism. As the simplest example, we perform the calculation of the integral formulae for a one-point function, in order to obtain the spontaneous polarization of the $(\mathbb{Z} / n \mathbb{Z})$-symmetric model.

There is another approach to find the expression for correlation functions. It was shown in [7] that the correlation functions of the eight-vertex model satisfy a set of difference equations, the quantum Knizhnik-Zamolodchikov equation of level -4. On the basis of the difference equation approach, we obtained the expression of the spontaneous polarization of the $(\mathbb{Z} / n \mathbb{Z})$-symmetric model [8]. In this paper, we show that the expressions for the spontaneous polarization of the $(\mathbb{Z} / n \mathbb{Z})$-symmetric model obtained on the basis of the free field representation formalism reproduce the known result in [8]. This coincidence indicates the relevance of the free field representation formalism.

The present paper is organized as follows. In section 2, we review the basic definitions of the $(\mathbb{Z} / n \mathbb{Z})$-symmetric model [1], the corresponding dual face model [6] and the vertex-face correspondence. In section 3, we introduce the corner transfer matrix (CTM) Hamiltonians and the vertex operators of the $(\mathbb{Z} / n \mathbb{Z})$-symmetric model and $A_{n-1}^{(1)}$ model, and also introduce the tail operators which relates those two CTM Hamiltonians. In section 4 we construct the free field formalism of the $(\mathbb{Z} / n \mathbb{Z})$-symmetric model. In section 5 we present trace formulae for correlation functions of the $(\mathbb{Z} / n \mathbb{Z})$-symmetric model. Furthermore, we calculate the spontaneous polarization of the $(\mathbb{Z} / n \mathbb{Z})$-symmetric model in this formalism. Sections 4 and 5 are main original parts of the present paper. In section 6 we give some concluding remarks.

2. Basic definitions

The present section aims to formulate the problem, thereby fixing the notation.

2.1. Theta functions

The Jacobi theta function with two pseudo-periods 1 and $\tau(\operatorname{Im} \tau>0)$ are defined as follows:

$$
\vartheta\left[\begin{array}{l}
a \tag{2.1}\\
b
\end{array}\right](v ; \tau):=\sum_{m \in \mathbb{Z}} \exp \{\pi \sqrt{-1}(m+a)[(m+a) \tau+2(v+b)]\},
$$

for $a, b \in \mathbb{R}$. Let $n \in \mathbb{Z} \geqslant 2$ and $r \in \mathbb{R}$ such that $r>n-1$, and also fix the parameter x such that $0<x<1$. We will use the abbreviations,

$$
\begin{equation*}
[v]=x^{\frac{v^{2}}{r}-v} \Theta_{x^{2 r}}\left(x^{2 v}\right), \quad[v]^{\prime}=x^{\frac{v^{2}}{r-1}-v} \Theta_{x^{2 r-2}}\left(x^{2 v}\right) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Theta_{q}(z)=(z ; q)_{\infty}\left(q z^{-1} ; q\right)_{\infty}(q ; q)_{\infty}=\sum_{m \in \mathbb{Z}} q^{m(m-1) / 2}(-z)^{m} \\
& \left(z ; q_{1}, \ldots, q_{m}\right)=\prod_{i_{1}, \ldots, i_{m} \geqslant 0}\left(1-z q_{1}^{i_{1}} \ldots q_{m}^{i_{m}}\right)
\end{aligned}
$$

Note that

$$
\vartheta\left[\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right]\left(\frac{v}{r}, \frac{\pi \sqrt{-1}}{\epsilon r}\right)=\sqrt{\frac{\epsilon r}{\pi}} \exp \left(-\frac{\epsilon r}{4}\right)[v],
$$

where $x=\mathrm{e}^{-\epsilon}(\epsilon>0)$.
For later conveniences we also introduce the following symbols:

$$
\begin{equation*}
r_{l}(v)=z^{\frac{r-1}{r} \frac{n-l}{n}} \frac{g_{l}\left(z^{-1}\right)}{g_{l}(z)}, \quad g_{l}(z)=\frac{\left\{x^{2 n+2 r-l-1} z\right\}\left\{x^{l+1} z\right\}}{\left\{x^{2 n-l+1} z\right\}\left\{x^{2 r+l-1} z\right\}}, \tag{2.3}
\end{equation*}
$$

where $z=x^{2 v}, 1 \leqslant l \leqslant n$ and

$$
\begin{equation*}
\{z\}=\left(z ; x^{2 r}, x^{2 n}\right)_{\infty} \tag{2.4}
\end{equation*}
$$

These factors will appear in the commutation relations among the type I vertex operators.
The integral kernel for the type I vertex operators will be given as the products of the following elliptic functions:

$$
\begin{equation*}
f(v, w)=\frac{\left[v+\frac{1}{2}-w\right]}{\left[v-\frac{1}{2}\right]}, \quad g(v)=\frac{[v-1]}{[v+1]} . \tag{2.5}
\end{equation*}
$$

2.2. Belavin's vertex model

Let $V=\mathbb{C}^{n}$ and $\left\{\varepsilon_{\mu}\right\}_{0 \leqslant \mu \leqslant n-1}$ be the standard orthonormal basis with the inner product $\left\langle\varepsilon_{\mu}, \varepsilon_{\nu}\right\rangle=\delta_{\mu \nu}$. Belavin's ($\mathbb{Z} / n \mathbb{Z}$)-symmetric model is a vertex model on a two-dimensional square lattice \mathcal{L} such that the state variables take on values of $(\mathbb{Z} / n \mathbb{Z})$-spin. In the original papers [1, 9], the R-matrix in the disordered phase is given. For the present purpose, we need the following R-matrix:
$R(v)=\frac{[1]}{[1-v]} r_{1}(v) \bar{R}(v), \quad \bar{R}(v)=\frac{1}{n} \sum_{\alpha \in G_{n}} \frac{\vartheta\left[\begin{array}{l}\frac{1}{2}-\frac{\alpha_{1}}{n} \\ \frac{1}{2}+\frac{\alpha_{2}}{n}\end{array}\right]\left(\frac{1}{n r}-\frac{v}{r} ; \frac{\pi \sqrt{-1}}{\epsilon r}\right)}{\vartheta\left[\begin{array}{l}\frac{1}{2}-\frac{\alpha_{1}}{n} \\ \frac{1}{2}+\frac{\alpha_{2}}{n}\end{array}\right]\left(\frac{1}{n r} ; \frac{\pi \sqrt{-1}}{\epsilon r}\right)} I_{\alpha} \otimes I_{\alpha}^{-1}$.
Here $G_{n}=(\mathbb{Z} / n \mathbb{Z}) \times(\mathbb{Z} / n \mathbb{Z})$, and $I_{\alpha}=g^{\alpha_{1}} h^{\alpha_{2}}$ for $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}\right)$, where

$$
\begin{equation*}
g v_{i}=\omega^{i} v_{i}, \quad h v_{i}=v_{i-1} \tag{2.7}
\end{equation*}
$$

with $\omega=\exp (2 \pi \sqrt{-1} / n)$. We assume that the parameters v, ϵ and r lie in the so-called principal regime:

$$
\begin{equation*}
\epsilon>0, \quad r>1, \quad 0<v<1 . \tag{2.8}
\end{equation*}
$$

When $n=2$, the principal regime (2.8) lies in one of the antiferroelectric phases of the eight-vertex model [3]. We describe n kinds of ground states of the $(\mathbb{Z} / n \mathbb{Z})$-symmetric model in the principal regime in section 3.1.

The R-matrix satisfies the Yang-Baxter equation (YBE),

$$
\begin{equation*}
R_{12}\left(v_{1}-v_{2}\right) R_{13}\left(v_{1}-v_{3}\right) R_{23}\left(v_{2}-v_{3}\right)=R_{23}\left(v_{2}-v_{3}\right) R_{13}\left(v_{1}-v_{3}\right) R_{12}\left(v_{1}-v_{2}\right) \tag{2.9}
\end{equation*}
$$

where $R_{i j}(v)$ denotes the matrix on $V^{\otimes 3}$, which acts as $R(v)$ on the i th and j th components and as identity on the other one.

If $i+k=j+l(\bmod n)$, the elements of the R-matrix $\bar{R}(v)_{j l}^{i k}$ is given as follows:

$$
\bar{R}(v)_{j l}^{i k}=\frac{h(v) \vartheta\left[\begin{array}{c}
\frac{1}{2} \tag{2.10}\\
\frac{1}{2}+\frac{k-i}{n}
\end{array}\right]\left(\frac{1-v}{n r} ; \frac{\pi \sqrt{-1}}{n \epsilon r}\right)}{\vartheta\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2}+\frac{j-k}{n}
\end{array}\right]\left(\frac{v}{n r} ; \frac{\pi \sqrt{-1}}{n \epsilon r}\right) \vartheta\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2}+\frac{j-i}{n}
\end{array}\right]\left(\frac{1}{n r} ; \frac{\pi \sqrt{-1}}{n \epsilon r}\right)}
$$

where

$$
h(v)=\prod_{j=0}^{n-1} \vartheta\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2}+\frac{j}{n}
\end{array}\right]\left(\frac{v}{n r} ; \frac{\pi \sqrt{-1}}{n \epsilon r}\right) / \prod_{j=1}^{n-1} \vartheta\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2}+\frac{j}{n}
\end{array}\right]\left(0 ; \frac{\pi \sqrt{-1}}{n \epsilon r}\right),
$$

and otherwise $\bar{R}(v)_{j l}^{i k}=0$.
Note that the weights (2.10) reproduce those of the eight-vertex model in the principal regime when $n=2$ [3].
2.3. The weight lattice and the root lattice of $A_{n-1}^{(1)}$

Let $V=\mathbb{C}^{n}$ and $\left\{\varepsilon_{\mu}\right\}_{0 \leqslant \mu \leqslant n-1}$ be the standard orthonormal basis as before. The weight lattice of $A_{n-1}^{(1)}$ is defined as follows:

$$
\begin{equation*}
P=\bigoplus_{\mu=0}^{n-1} \mathbb{Z} \bar{\varepsilon}_{\mu} \tag{2.11}
\end{equation*}
$$

where

$$
\bar{\varepsilon}_{\mu}=\varepsilon_{\mu}-\varepsilon, \quad \varepsilon=\frac{1}{n} \sum_{\mu=0}^{n-1} \varepsilon_{\mu}
$$

We denote the fundamental weights by $\omega_{\mu}(1 \leqslant \mu \leqslant n-1)$,

$$
\omega_{\mu}=\sum_{\nu=0}^{\mu-1} \bar{\varepsilon}_{\nu}
$$

and also denote the simple roots by $\alpha_{\mu}(1 \leqslant \mu \leqslant n-1)$,

$$
\alpha_{\mu}=\varepsilon_{\mu-1}-\varepsilon_{\mu}=\bar{\varepsilon}_{\mu-1}-\bar{\varepsilon}_{\mu} .
$$

The root lattice of $A_{n-1}^{(1)}$ is defined as follows:

$$
\begin{equation*}
Q=\bigoplus_{\mu=1}^{n-1} \mathbb{Z} \alpha_{\mu} \tag{2.12}
\end{equation*}
$$

For $a \in P$ we set

$$
\begin{equation*}
a_{\mu \nu}=\bar{a}_{\mu}-\bar{a}_{\nu}, \quad \bar{a}_{\mu}=\left\langle a+\rho, \varepsilon_{\mu}\right\rangle=\left\langle a+\rho, \bar{\varepsilon}_{\mu}\right\rangle, \quad \rho=\sum_{\mu=1}^{n-1} \omega_{\mu} \tag{2.13}
\end{equation*}
$$

Useful formulae are

$$
\begin{aligned}
& \left\langle\bar{\varepsilon}_{\mu}, \varepsilon_{\nu}\right\rangle=\left\langle\bar{\varepsilon}_{\mu}, \bar{\varepsilon}_{\nu}\right\rangle=\delta_{\mu \nu}-\frac{1}{n}, \quad\left\langle\alpha_{\mu}, \omega_{\nu}\right\rangle=\delta_{\mu \nu}, \\
& \left\langle\bar{\varepsilon}_{\mu}, \omega_{\nu}\right\rangle=\theta(\mu<\nu)-\frac{\nu}{n}, \quad\left\langle\omega_{\mu}, \omega_{\nu}\right\rangle=\min (\mu, \nu)-\frac{\mu \nu}{n} .
\end{aligned}
$$

When $a+\rho=\sum_{\mu=0}^{n-1} k^{\mu} \omega_{\mu}$, we have $a_{\mu \nu}=k^{\mu+1}+\cdots+k^{\nu}$ when $\mu<\nu$, and

$$
\langle a+\rho, a+\rho\rangle=\frac{1}{n} \sum_{\mu<v} a_{\mu \nu}^{2}, \quad\langle a+\rho, \rho\rangle=\frac{1}{2} \sum_{\mu<v} a_{\mu \nu}
$$

Let $\sum_{\mu=0}^{n-1} k^{\mu}=r$, where $a+\rho=\sum_{\mu=0}^{n-1} k^{\mu} \omega_{\mu}$, then we denote $a \in P_{r-n}$.

2.4. The $A_{n-1}^{(1)}$ face model

An ordered pair $(a, b) \in P_{r-n}^{2}$ is called admissible if $b=a+\bar{\varepsilon}_{\mu}$, for a certain $\mu(0 \leqslant \mu \leqslant n-1)$. For $(a, b, c, d) \in P_{r-n}^{4}$, let $W\left[\left.\begin{array}{ll}c & d \\ b & d\end{array} \right\rvert\, v\right]$ be the Boltzmann weight of the $A_{n-1}^{(1)}$ model for the state configuration $\left[\begin{array}{cc}c & d \\ b & a\end{array}\right]$ round a face. Here the four states a, b, c and d are ordered clockwise from the SE corner. In this model, $W\left[\left.\begin{array}{ll}c & d \\ b & a\end{array} \right\rvert\, v\right]=0$ unless the four pairs $(a, b),(a, d),(b, c)$ and (d, c) are admissible. Non-zero Boltzmann weights are parametrized in terms of the elliptic theta function of the spectral parameter v as follows:

$$
\begin{align*}
& W\left[\left.\begin{array}{cc}
a+2 \bar{\varepsilon}_{\mu} & a+\bar{\varepsilon}_{\mu} \\
a+\bar{\varepsilon}_{\mu} & a
\end{array} \right\rvert\, v=r_{1}(v),\right. \\
& W\left[\left.\begin{array}{cc}
a+\bar{\varepsilon}_{\mu}+\bar{\varepsilon}_{v} & a+\bar{\varepsilon}_{\mu} \\
a+\bar{\varepsilon}_{v} & a
\end{array} \right\rvert\,\right]=-r_{1}(v) \frac{[v]\left[a_{\mu \nu}+1\right]}{[1-v]\left[a_{\nu \nu}\right]} \quad(\mu \neq v), \tag{2.14}\\
& W\left[\left.\begin{array}{cc}
a+\bar{\varepsilon}_{\mu}+\bar{\varepsilon}_{v} & a+\bar{\varepsilon}_{\mu} \\
a+\bar{\varepsilon}_{\mu} & a
\end{array} \right\rvert\, v\right]=r_{1}(v) \frac{[1]\left[v+a_{\mu v}\right]}{[1-v]\left[a_{\mu \nu}\right]} \quad(\mu \neq v) .
\end{align*}
$$

We consider the so-called regime III in the model, i.e., $0<v<1$.
The Boltzmann weights (2.14) solve the YBE for the face model [6]:

$$
\left.\begin{array}{rl}
\sum_{g} W\left[\left.\begin{array}{ll}
d & e \\
c & g
\end{array} \right\rvert\, v_{1}\right.
\end{array}\right] W\left[\left.\begin{array}{ll}
c & g \\
b & a
\end{array} \right\rvert\, v_{2}\right] W\left[\left.\begin{array}{cc}
e & f \tag{2.15}\\
g & a
\end{array} \right\rvert\, v_{1}-v_{2}\right] .
$$

2.5. Vertex-face correspondence

In this paper, we use the R-matrix of the $(\mathbb{Z} / n \mathbb{Z})$-symmetric model in the principal regime while Belavin's original paper used that in the disordered phase. Thus, we need different intertwining vectors from that by Jimbo-Miwa-Okado [6].

Let

$$
t(v)_{a-\bar{\varepsilon}_{\mu}}^{a}=\sum_{\nu=0}^{n-1} \varepsilon_{\nu} \vartheta\left[\begin{array}{c}
0 \tag{2.16}\\
\frac{1}{2}+\frac{v}{n}
\end{array}\right]\left(\frac{v}{n r}+\frac{\bar{a}_{\mu}}{r} ; \frac{\pi \sqrt{-1}}{n \in r}\right) .
$$

Then we have (cf. figure 1)
$R\left(v_{1}-v_{2}\right) t\left(v_{1}\right)_{a}^{d} \otimes t\left(v_{2}\right)_{d}^{c}=\sum_{b} t\left(v_{1}\right)_{b}^{c} \otimes t\left(v_{2}\right)_{a}^{b} W\left[\left.\begin{array}{ll}c & d \\ b & a\end{array} \right\rvert\, v_{1}-v_{2}\right]$.

Figure 1. Picture representation of the vertex-face correspondence.

3. Vertex-face transformation

The basic objects in the vertex operator approach are the CTMs and the vertex operators [10]. In sections 3.1 and 3.2 we recall the CTM Hamiltonians, the type I vertex operators and the space of states of the $(\mathbb{Z} / n \mathbb{Z})$-symmetric model and the $A_{n-1}^{(1)}$ model, respectively.

In [4], Lashkevich and Pugai introduced the nonlocal operator called the tail operator, in order to express the correlation functions of the eight-vertex model in terms of those of the SOS model. In section 3.3, we introduce the tail operator for the present purpose; i.e., in order to express the correlation functions of the $(\mathbb{Z} / n \mathbb{Z})$-symmetric model in terms of those of the $A_{n-1}^{(1)}$ model. The commutation relations among the tail operators and the type I vertex operators are given in section 3.4.

3.1. The CTM Hamiltonian for the vertex model

Let us consider the 'low-temperature' limit $x \rightarrow 0$. Then the elements of the R-matrix behave as

$$
\begin{equation*}
R_{\mu^{\prime} \nu^{\prime}}^{\mu v}(v) \sim \zeta^{H_{v}(\mu, \nu)} \delta_{\nu^{\prime}}^{\mu} \delta_{\mu^{\prime}}^{v}, \tag{3.1}
\end{equation*}
$$

where $z=x^{2 v}=\zeta^{n}$ and

$$
H_{v}(\mu, v)= \begin{cases}\mu-v-1 & \text { if } 0 \leqslant v<\mu \leqslant n-1 \tag{3.2}\\ n-1+\mu-v & \text { if } 0 \leqslant \mu \leqslant v \leqslant n-1\end{cases}
$$

Thus the CTM Hamiltonian of the $(\mathbb{Z} / n \mathbb{Z})$-symmetric model in the principal regime is given as follows:

$$
\begin{equation*}
H_{\mathrm{CTM}}\left(\mu_{1}, \mu_{2}, \mu_{3}, \ldots\right)=\sum_{j=1}^{\infty} j H_{v}\left(\mu_{j}, \mu_{j+1}\right) \tag{3.3}
\end{equation*}
$$

The CTM Hamiltonian diverges unless $\mu_{j}=i+1-j(\bmod n)$ for $j \gg 0$ and a certain $0 \leqslant i \leqslant n-1$.

Let $\mathcal{H}^{(i)}$ be the \mathbb{C}-vector space spanned by the half-infinite pure tensor vectors of the forms ${ }^{1}$
$\varepsilon_{\mu_{1}} \otimes \varepsilon_{\mu_{2}} \otimes \varepsilon_{\mu_{2}} \otimes \cdots \quad$ with $\quad \mu_{j} \in \mathbb{Z} / n \mathbb{Z}, \mu_{j}=i+1-j(\bmod n) \quad$ for $\quad j \gg 0$.
Let $\mathcal{H}^{*(i)}$ be the dual of $\mathcal{H}^{(i)}$ spanned by the half-infinite pure tensor vectors of the forms
$\cdots \otimes \varepsilon_{\mu_{-2}} \otimes \varepsilon_{\mu_{-1}} \otimes \varepsilon_{\mu_{0}} \quad$ with $\quad \mu_{j} \in \mathbb{Z} / n \mathbb{Z}, \quad \mu_{j}=i+1-j(\bmod n) \quad$ for $\quad j \ll 0$.

1 We fix $\mathcal{H}^{(i)}$ by (3.4) such that it coincides with $V\left(\omega_{i}\right)$, the level 1 highest weight irreducible $U_{q}(\widehat{\mathfrak{s l}})$-module, in the trigonometric limit $r \rightarrow \infty$. For example, see [11], keeping in mind that our i should be read as $-i$ in [11].

Introduce the type I vertex operator by the following half-infinite transfer matrix

Then the operator (3.6) is an intertwiner from $\mathcal{H}^{(i)}$ to $\mathcal{H}^{(i+1)}$. The type I vertex operators satisfy the following commutation relation:

$$
\begin{equation*}
\Phi^{\mu}\left(v_{1}\right) \Phi^{\nu}\left(v_{2}\right)=\sum_{\mu^{\prime}, v^{\prime}} R\left(v_{1}-v_{2}\right)_{\mu^{\prime} v^{\prime}}^{\mu v} \Phi^{v^{\prime}}\left(v_{2}\right) \Phi^{\mu^{\prime}}\left(v_{1}\right) \tag{3.7}
\end{equation*}
$$

Introduce the CTM in the south-east (SE) corner.

The diagonal form of $A_{\mathrm{SE}}^{(i)}(v)$ can be determined from the 'low-temperature' limit of the R-matrix (3.1)-(3.2):

$$
\begin{equation*}
A_{\mathrm{SE}}^{(i)}(v) \sim \zeta^{H_{\text {CTM }}}=z^{\frac{1}{n} H_{\text {CTM }}}: \mathcal{H}^{(i)} \rightarrow \mathcal{H}^{(i)}, \tag{3.8}
\end{equation*}
$$

where \sim refers to an equality modulo a divergent scalar in the infinite lattice limit. Likewise, other three types of the CTMs are given as follows:

$$
\begin{array}{ll}
A_{\mathrm{NE}}^{(i)}(v): & \mathcal{H}^{(i)} \rightarrow \mathcal{H}^{*(i)} \\
A_{\mathrm{NW}}^{(i)}(v): & \mathcal{H}^{*(i)} \rightarrow \mathcal{H}^{*(i)}, \tag{3.9}\\
A_{\mathrm{SW}}^{(i)}(v): & \mathcal{H}^{*(i)} \rightarrow \mathcal{H}^{(i)},
\end{array}
$$

where NE, NW and SW stand for the corners north-east, north-west and south-west, respectively. It seems to be rather general [3] that the product of four CTMs in the infinite lattice limit is independent of v :

$$
\begin{equation*}
\rho^{(i)}=A_{\mathrm{SE}}^{(i)}(v) A_{\mathrm{SW}}^{(i)}(v) A_{\mathrm{NW}}^{(i)}(v) A_{\mathrm{NE}}^{(i)}(v)=x^{2 H_{\text {СтМ }}} . \tag{3.10}
\end{equation*}
$$

Since $H\left(\mu_{j}, \mu_{j+1}\right)$ takes on the value of $\{0,1, \ldots, n-1\}$, the eigenvalues of $H_{\text {СТМ }}$ are of the form

$$
N=\sum_{j=1}^{\infty} j m_{j}, \quad 0 \leqslant m_{j} \leqslant n-1
$$

This stands for the partition of N such that the multiplicity of each j is at most $n-1$. Thus, the character is given by

$$
\begin{equation*}
\chi^{(i)}=\operatorname{tr}_{\mathcal{H}^{(i)}}\left(\rho^{(i)}\right)=\frac{\left(x^{2 n} ; x^{2 n}\right)_{\infty}}{\left(x^{2} ; x^{2}\right)_{\infty}} . \tag{3.11}
\end{equation*}
$$

3.2. CTM for the $A_{n-1}^{(1)}$ model

After gauge transformation [6], the CTM Hamiltonian of the $A_{n-1}^{(1)}$ model in the regime III is given as follows:

$$
\begin{align*}
& H_{\mathrm{CTM}}\left(a_{0}, a_{1}, a_{2}, \ldots\right)=\sum_{j=1}^{\infty} j H_{f}\left(a_{j-1}, a_{j}, a_{j+1}\right), \tag{3.12}\\
& H_{f}\left(a+\bar{\varepsilon}_{\mu}+\bar{\varepsilon}_{v}, a+\bar{\varepsilon}_{\mu}, a\right)=\frac{1}{n} H_{v}(v, \mu)
\end{align*}
$$

where $H_{v}(\nu, \mu)$ is defined by (3.2). The CTM Hamiltonian diverges unless $a_{j}=\xi+\omega_{i+1-j}$ for $j \gg 0$ and a certain $\xi \in P_{r-n-1}$ and $0 \leqslant i \leqslant n-1$.

For $k=a+\rho, l=\xi+\rho$ and $0 \leqslant i \leqslant n-1$, let $\mathcal{H}_{l, k}^{(i)}$ be the space of admissible paths $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ such that
$a_{0}=a, \quad a_{j}-a_{j+1} \in\left\{\bar{\varepsilon}_{0}, \bar{\varepsilon}_{1}, \ldots, \bar{\varepsilon}_{n-1}\right\}$,

$$
\begin{equation*}
\text { for } \quad j=1,2,3, \ldots, \quad a_{j}=\xi+\omega_{i+1-j} \quad \text { for } \quad j \gg 0 . \tag{3.13}
\end{equation*}
$$

Also, let $\mathcal{H}_{l, k}^{*(i)}$ be the space of admissible paths $\left(\ldots, a_{-2}, a_{-1}, a_{0}\right)$ such that
$a_{0}=a, \quad a_{j}-a_{j+1} \in\left\{\bar{\varepsilon}_{0}, \bar{\varepsilon}_{1}, \ldots, \bar{\varepsilon}_{n-1}\right\}$,

$$
\begin{equation*}
\text { for } \quad j=1,2,3, \ldots, \quad a_{j}=\xi+\omega_{i+1-j} \quad \text { for } \quad j \ll 0 . \tag{3.14}
\end{equation*}
$$

Introduce the type I vertex operator by the following half-infinite transfer matrix

Then the operator (3.15) is an intertwiner from $\mathcal{H}_{l, k}^{(i)}$ to $\mathcal{H}_{l, k+\bar{\varepsilon}_{\mu}}^{(i+1)}$. The type I vertex operators satisfy the following commutation relation:

$$
\Phi\left(v_{1}\right)_{b}^{c} \Phi\left(v_{2}\right)_{a}^{b}=\sum_{d} W\left[\left.\begin{array}{ll}
c & d \tag{3.16}\\
b & a
\end{array} \right\rvert\, v_{1}-v_{2}\right] \Phi\left(v_{2}\right)_{d}^{c} \Phi\left(v_{1}\right)_{a}^{d}
$$

Introduce the CTM of the $A_{n-1}^{(1)}$ model in the SE corner

The diagonal form of $A_{\mathrm{SE}}^{(l, k)}(v)$ can be determined from the 'low-temperature' limit (3.12):

$$
\begin{equation*}
A_{\mathrm{SE}}^{(l, k)}(v) \sim \zeta^{H_{\text {cTM }}}=z^{\frac{1}{n} H_{\text {Стм }}}: \mathcal{H}_{l, k}^{(i)} \rightarrow \mathcal{H}_{l, k}^{(i)}, \tag{3.17}
\end{equation*}
$$

where \sim refers to an equality modulo a divergent scalar in the infinite lattice limit. Likewise other three types of the CTMs are given as follows:

$$
\begin{array}{ll}
A_{\mathrm{NE}}^{(l, k)}(v): & \mathcal{H}_{l, k}^{(i)} \rightarrow \mathcal{H}_{l, k}^{*(i)}, \\
A_{\mathrm{NW}}^{(l, k)}(v): & \mathcal{H}_{l, k}^{*(i)} \rightarrow \mathcal{H}_{l, k}^{*(i)}, \tag{3.18}\\
A_{\mathrm{SW}}^{(l, k)}(v): & \mathcal{H}_{l, k}^{*(i)} \rightarrow \mathcal{H}_{l, k}^{(i)} .
\end{array}
$$

The product of four CTMs for the $A_{n-1}^{(1)}$ model in the infinite lattice limit is also independent of v [6]:

$$
\begin{equation*}
\rho_{l, k}^{(i)}=G_{a} x^{2 n H_{l, k}^{(i)}} \tag{3.19}
\end{equation*}
$$

where

$$
G_{a}=\prod_{\mu<v}\left[a_{\mu \nu}\right]
$$

The character of the $A_{n-1}^{(1)}$ model was obtained in [6]:

$$
\begin{equation*}
\chi_{l, k}^{(i)}=\operatorname{tr}_{\mathcal{H}_{l, k}^{(i)}}\left(\rho_{l, k}^{(i)}\right)=\frac{x^{n\left|\beta_{1} k+\beta_{2} l\right|^{2}}}{\left(x^{2 n} ; x^{2 n}\right)_{\infty}^{n-1}} G_{a}, \tag{3.20}
\end{equation*}
$$

where
$t^{2}-\beta_{0} t-1=\left(t-\beta_{1}\right)\left(t-\beta_{2}\right), \quad \beta_{0}=\frac{1}{\sqrt{r(r-1)}}, \quad \beta_{1}<\beta_{2}$.
We note the following sum formula:

$$
\begin{equation*}
\sum_{\substack{k \equiv l+\omega_{i} \\(\bmod Q)}} \chi_{l, k}^{(i)}=\frac{\left(x^{2 n} ; x^{2 n}\right)_{\infty}}{\left(x^{2} ; x^{2}\right)_{\infty}}\left(\frac{\left(x^{2 r} ; x^{2 r}\right)_{\infty}}{\left(x^{2 r-2} ; x^{2 r-2}\right)_{\infty}}\right)^{(n-1)(n-2) / 2} G_{\xi}^{\prime} \tag{3.22}
\end{equation*}
$$

where

$$
G_{\xi}^{\prime}=\prod_{\mu<\nu}\left[\xi_{\mu \nu}\right]^{\prime}
$$

Equations (3.22) and (3.11) imply that

$$
\begin{equation*}
\chi^{(i)}=\frac{1}{b_{l}} \sum_{\substack{k \equiv l+\omega_{i} \\(\bmod Q)}} \chi_{l, k}^{(i)}, \tag{3.23}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{l}=\left(\frac{\left(x^{2 r} ; x^{2 r}\right)_{\infty}}{\left(x^{2 r-2} ; x^{2 r-2}\right)_{\infty}}\right)^{(n-1)(n-2) / 2} G_{\xi}^{\prime} \tag{3.24}
\end{equation*}
$$

Figure 2. Picture representation of the dual intertwining vectors.

Figure 3. Vertex-face correspondence by dual intertwining vectors.

3.3. Tail operator

Let us introduce the dual intertwining vectors (see figure 2) satisfying

$$
\begin{equation*}
\sum_{\mu=0}^{n-1} t_{\mu}^{*}(v)_{a}^{a^{\prime}} t^{\mu}(v)_{a^{\prime \prime}}^{a}=\delta_{a^{\prime \prime}}^{a^{\prime}}, \quad \sum_{v=0}^{n-1} t^{\mu}(v)_{a-\bar{\varepsilon}_{v}}^{a} t_{\mu^{\prime}}^{*}(v)_{a}^{a-\bar{\varepsilon}_{v}}=\delta_{\mu^{\prime}}^{\mu} \tag{3.25}
\end{equation*}
$$

From (2.17) and (3.25), we have (cf. figure 3)
$t^{*}\left(v_{1}\right)_{c}^{b} \otimes t^{*}\left(v_{2}\right)_{b}^{a} R\left(v_{1}-v_{2}\right)=\sum_{d} W\left[\left.\begin{array}{ll}c & d \\ b & a\end{array} \right\rvert\, v_{1}-v_{2}\right] t^{*}\left(v_{1}\right)_{d}^{a} \otimes t^{*}\left(v_{2}\right)_{c}^{d}$.
Now introduce the intertwining operators between $\mathcal{H}^{(i)}$ and $\mathcal{H}_{l, k}^{(i)}\left(k=l+\omega_{i}(\bmod Q)\right)$:

$$
\begin{align*}
& T(u)^{\xi a_{0}}=\prod_{j=0}^{\infty} t^{\mu_{j}}(-u)_{a_{j+1}}^{a_{j}}: \mathcal{H}^{(i)} \rightarrow \mathcal{H}_{l, k}^{(i)} \tag{3.27}\\
& T(u)_{\xi a_{0}}=\prod_{j=0}^{\infty} t_{\mu_{j}}^{*}(-u)_{a_{j}}^{a_{j+1}}: \mathcal{H}_{l, k}^{(i)} \rightarrow \mathcal{H}^{(i)}
\end{align*}
$$

where $k=a_{0}+\rho$ and $l=\xi+\rho$, and $0<\mathfrak{R}(u)<\frac{n}{2}+1$. The tail operator Λ (see figure 4) is defined by

$$
\begin{equation*}
\Lambda(u)_{a}^{a^{\prime}}=T(u)^{\xi a^{\prime}} T(u)_{\xi a} . \tag{3.28}
\end{equation*}
$$

Let

$$
L\left[\left.\begin{array}{ll}
a_{0}^{\prime} & a_{1}^{\prime} \tag{3.29}\\
a_{0} & a_{1}
\end{array} \right\rvert\, u\right]:=\sum_{\mu=0}^{n-1} t_{\mu}^{*}(-u)_{a_{0}}^{a_{1}} t^{\mu}(-u)_{a_{1}^{\prime}}^{a_{0}^{\prime}}
$$

Then we have

$$
\Lambda(u)_{a_{0}}^{a_{0}^{\prime}}=\prod_{j=0}^{\infty} L\left[\left.\begin{array}{ll}
a_{j}^{\prime} & a_{j+1}^{\prime} \tag{3.30}\\
a_{j} & a_{j+1}
\end{array} \right\rvert\, u\right] .
$$

Here we note that in the 'low-temperature' limit $t_{j}^{*}(-u)_{\xi+\omega_{j+1}}^{\xi+\omega_{j}} t^{j}(-u)_{\xi+\omega_{j}}^{\xi+\omega_{j+1}}$ is much greater than other, $t_{\mu}^{*}(-u)_{\xi+\omega_{j+1}}^{\xi+\omega_{j}} t^{\mu}(-u)_{\xi+\omega_{j}}^{\xi+\omega_{j+1}}(\mu \neq j)$.

$$
\Lambda(u)_{a_{0}}^{a_{0}^{\prime}}=
$$

Figure 4. Tail operator $\Lambda(u)_{a_{0}}^{a_{0}^{\prime}}$. The upper (resp. lower) half stands for $T(u)^{\xi a_{0}}$ (resp. $T(u)_{\xi a_{0}}$).

Note that

$$
L\left[\left.\begin{array}{cc}
a^{\prime} & a^{\prime}-\bar{\varepsilon}_{v} \tag{3.31}\\
a & a-\bar{\varepsilon}_{\mu}
\end{array} \right\rvert\, u\right]=\frac{\left[u+\bar{a}_{\mu}-{\overline{a^{\prime}}}_{\nu}\right]}{[u]} \prod_{j \neq \mu} \frac{\left[{\overline{a^{\prime}}}^{\prime}-\bar{a}_{j}\right]}{\left[a_{\mu j}\right]}
$$

It is obvious from (3.25) that we have

$$
L\left[\left.\begin{array}{cc}
a & a^{\prime} \tag{3.32}\\
a & a^{\prime \prime}
\end{array} \right\rvert\, u\right]=\delta_{a^{\prime \prime}}^{a^{\prime}}
$$

We therefore have

$$
\begin{equation*}
\Lambda(u)_{a}^{a}=1 . \tag{3.33}
\end{equation*}
$$

From (3.23) and (3.33), we may assume that

$$
\begin{equation*}
\rho^{(i)}=\frac{1}{b_{l}} \sum_{\substack{k \equiv l+\omega_{i} \\(\bmod Q)}} T(u)_{\xi a} \rho_{l, k}^{(i)} T(u)^{\xi a} . \tag{3.34}
\end{equation*}
$$

3.4. Commutation relations between Λ and ϕ

By using the vertex-face correspondence (see figure 5), we obtain

$$
\begin{align*}
& T(u)^{\xi b} \Phi^{\mu}(v)=\sum_{a} t^{\mu}(v-u)_{a}^{b} \Phi(v)_{a}^{b} T(u)^{\xi a}, \tag{3.35}\\
& T(u)_{\xi b} \Phi(v)_{a}^{b}=\sum_{\mu} t_{\mu}^{*}(v-u)_{b}^{a} \Phi^{\mu}(v) T(u)_{\xi a} . \tag{3.36}
\end{align*}
$$

From these commutation relations and the definition of the tail operator (3.28), we have

$$
\Lambda(u)_{b}^{c} \Phi(v)_{a}^{b}=\sum_{d} L\left[\left.\begin{array}{ll}
c & d \tag{3.37}\\
b & a
\end{array} \right\rvert\, u-v\right] \Phi(v)_{d}^{c} \Lambda(u)_{a}^{d}
$$

4. The vertex operator approach

One of the most standard ways to calculate correlation functions is the vertex operator approach [10] on the basis of free field representation. In section 4.2, we recall the free field representation for the $A_{n-1}^{(1)}$ model [2]. The type I vertex operators of the $A_{n-1}^{(1)}$ model can be constructed in terms of basic bosons introduced in [12, 13]. The $A_{n-1}^{(1)}$ model has the so-called σ-invariance. The free field representation of type I vertex operator given in section 4.2 is not invariant under σ-transformation. Thus, we give other free field

Figure 5. Commutation relations among $T\left(v_{0}\right)^{a \xi}, T\left(v_{0}\right)_{a \xi}$ and the type I vertex operators in vertex and face models.
representations in section 4.3. We also need the bosonized CTM Hamiltonian of the $A_{n-1}^{(1)}$ model [14] in order to obtain correlation functions of the $A_{n-1}^{(1)}$ model. In section 4.4 we discuss the space of states of the unrestricted $A_{n-1}^{(1)}$ model. The free field representation of the tail operator is presented in section 4.5.

4.1. Bosons

Let us consider the bosons, $B_{m}^{j}(1 \leqslant j \leqslant n-1, m \in \mathbb{Z} \backslash\{0\})$, with the commutation relations

$$
\left[B_{m}^{j}, B_{m^{\prime}}^{k}\right]= \begin{cases}m \frac{[(n-1) m]_{x}}{[n m]_{x}} \frac{[(r-1) m]_{x}}{[r m]_{x}} \delta_{m+m^{\prime}, 0}, & (j=k) \tag{4.1}\\ -m x^{\operatorname{sgn}(j-k) n m} \frac{[m]_{x}}{[n m]_{x}} \frac{[(r-1) m]_{x}}{[r m]_{x}} \delta_{m+m^{\prime}, 0}, & (j \neq k)\end{cases}
$$

where the symbol $[a]_{x}$ stands for $\left(x^{a}-x^{-a}\right) /\left(x-x^{-1}\right)$. Define B_{m}^{n} by

$$
\sum_{j=1}^{n} x^{-2 j m} B_{m}^{j}=0
$$

Then the commutation relations (4.1) holds for all $1 \leqslant j, k \leqslant n$. These oscillators were introduced in [12, 13].

For $\alpha, \beta \in \mathfrak{h}^{*}:=\mathbb{C} \omega_{0} \oplus \mathbb{C} \omega_{1} \oplus \cdots \mathbb{C} \omega_{n-1}$, let us define the zero-mode operators P_{α}, Q_{β} with the commutation relations

$$
\left[P_{\alpha}, \sqrt{-1} Q_{\beta}\right]=\langle\alpha, \beta\rangle, \quad\left[P_{\alpha}, B_{m}^{j}\right]=\left[Q_{\beta}, B_{m}^{j}\right]=0
$$

We will deal with the bosonic Fock spaces $\mathcal{F}_{l, k},\left(l, k \in \mathfrak{h}^{*}\right)$ generated by $B_{-m}^{j}(m>0)$ over the vacuum vectors $|l, k\rangle$:

$$
\mathcal{F}_{l, k}=\mathbb{C}\left[\left\{B_{-1}^{j}, B_{-2}^{j}, \ldots\right\}_{1 \leqslant j \leqslant n}\right]|l, k\rangle,
$$

where

$$
\begin{aligned}
& B_{m}^{j}|l, k\rangle=0(m>0) \\
& P_{\alpha}|l, k\rangle=\left\langle\alpha, \beta_{1} k+\beta_{2} l\right\rangle|l, k\rangle \\
& |l, k\rangle=\exp \left(\sqrt{-1}\left(\beta_{1} Q_{k}+\beta_{2} Q_{l}\right)\right)|0,0\rangle
\end{aligned}
$$

where β_{1} and β_{2} are defined by (3.21).

4.2. Type I vertex operators

Let us define the basic operators for $j=1, \ldots, n-1$:
$U_{-\alpha_{j}}(v)=z^{\frac{r-1}{r}}: \exp \left(-\beta_{1}\left(\sqrt{-1} Q_{\alpha_{j}}+P_{\alpha_{j}} \log z\right)+\sum_{m \neq 0} \frac{1}{m}\left(B_{m}^{j}-B_{m}^{j+1}\right)\left(x^{j} z\right)^{-m}\right):$,
$U_{\omega_{j}}(v)=z^{\frac{r-\frac{1}{r} \tau}{\frac{1(n-j)}{n}}}: \exp \left(\beta_{1}\left(\sqrt{-1} Q_{\omega_{j}}+P_{\omega_{j}} \log z\right)-\sum_{m \neq 0} \frac{1}{m} \sum_{k=1}^{j} x^{(j-2 k+1) m} B_{m}^{k} z^{-m}\right):$,
where $\beta_{1}=-\sqrt{\frac{r-1}{r}}$ and $z=x^{2 v}$ as usual. Following commutation relations are useful:

$$
\begin{align*}
& U_{\omega_{1}}(v) U_{\omega_{j}}\left(v^{\prime}\right)=r_{j}\left(v-v^{\prime}\right) U_{\omega_{j}}\left(v^{\prime}\right) U_{\omega_{1}}(v), \tag{4.4}\\
& U_{-\alpha_{j}}(v) U_{\omega_{j}}\left(v^{\prime}\right)=-f\left(v-v^{\prime}, 0\right) U_{\omega_{j}}\left(v^{\prime}\right) U_{-\alpha_{j}}(v), \tag{4.5}\\
& U_{-\alpha_{j}}(v) U_{-\alpha_{j+1}}\left(v^{\prime}\right)=-f\left(v-v^{\prime}, 0\right) U_{-\alpha_{j+1}}\left(v^{\prime}\right) U_{-\alpha_{j}}(v), \tag{4.6}\\
& U_{-\alpha_{j}}(v) U_{-\alpha_{j}}\left(v^{\prime}\right)=g\left(v-v^{\prime}\right) U_{-\alpha_{j}}\left(v^{\prime}\right) U_{-\alpha_{j}}(v) . \tag{4.7}
\end{align*}
$$

In the sequel we set

$$
\pi_{\mu}=\sqrt{r(r-1)} P_{\bar{\varepsilon}_{\mu}}, \quad \pi_{\mu \nu}=\pi_{\mu}-\pi_{\nu}
$$

The $\pi_{\mu \nu}$ acts on $\mathcal{F}_{l, k}$ as a scalar $\left\langle\varepsilon_{\mu}-\varepsilon_{\nu}, r l-(r-1) k\right\rangle$.
For $0 \leqslant \mu \leqslant n-1$ define the type I vertex operator [2] by

$$
\begin{align*}
\phi_{\mu}(v)= & \oint \prod_{j=1}^{\mu} \frac{\mathrm{d} z_{j}}{2 \pi \sqrt{-1} z_{j}} U_{\omega_{1}}(v) U_{-\alpha_{1}}\left(v_{1}\right) \cdots U_{-\alpha_{\mu}}\left(v_{\mu}\right) \prod_{j=0}^{\mu-1} f\left(v_{j+1}-v_{j}, \pi_{j \mu}\right) \prod_{\substack{j=0 \\
j \neq \mu}}^{n-1}\left[\pi_{j \mu}\right]^{-1} \\
= & (-1)^{\mu} \oint \prod_{j=1}^{\mu} \frac{\mathrm{d} z_{j}}{2 \pi \sqrt{-1} z_{j}} U_{-\alpha_{\mu}}\left(v_{\mu}\right) \cdots U_{-\alpha_{1}}\left(v_{1}\right) U_{\omega_{1}}(v) \\
& \times \prod_{j=0}^{\mu-1} f\left(v_{j}-v_{j+1}, 1-\pi_{j \mu}\right) \prod_{\substack{j=0 \\
j \neq \mu}}^{n-1}\left[\pi_{j \mu}\right]^{-1}, \tag{4.8}
\end{align*}
$$

where $v_{0}=v$ and $z_{j}=x^{2 v_{j}}$. The integral contour for z_{j}-integration encircles the poles at $z_{j}=x^{1+2 k r} z_{j-1}\left(k \in \mathbb{Z}_{\geqslant 0}\right)$, but not the poles at $z_{j}=x^{-1-2 k r} z_{j-1}\left(k \in \mathbb{Z}_{\geqslant 0}\right)$, for $1 \leqslant j \leqslant \mu$.

Note that

$$
\begin{equation*}
\phi_{\mu}(v): \mathcal{F}_{l, k} \longrightarrow \mathcal{F}_{l, k+\bar{\varepsilon}_{\mu}} . \tag{4.9}
\end{equation*}
$$

These type I vertex operators satisfy the following commutation relations on $\mathcal{F}_{l, k}$:
$\phi_{\mu_{1}}\left(v_{1}\right) \phi_{\mu_{2}}\left(v_{2}\right)=\sum_{\varepsilon_{\mu_{1}}+\varepsilon_{\mu_{2}}=\varepsilon_{\mu_{1}^{\prime}}+\varepsilon_{\mu_{2}^{\prime}}} W\left[\left.\begin{array}{cc}a+\bar{\varepsilon}_{\mu_{1}}+\bar{\varepsilon}_{\mu_{2}} & a+\bar{\varepsilon}_{\mu_{1}^{\prime}} \\ a+\bar{\varepsilon}_{\mu_{2}} & a\end{array} \right\rvert\, v_{1}-v_{2}\right] \phi_{\mu_{2}^{\prime}}\left(v_{2}\right) \phi_{\mu_{1}^{\prime}}\left(v_{1}\right)$.

We thus denote the operator $\phi_{\mu}(v)$ by $\Phi(v)_{a}^{a+\bar{\varepsilon}_{\mu}}$ on the bosonic Fock space $\mathcal{F}_{l, a+\rho}$. We notice that our vertex operator (4.8) has different normalization from that originally constructed in [2] because of the difference of the Boltzmann weight W. Furthermore, the range of μ is shifted from that of [2] by 1 so that our $\phi_{\mu}(v)$ corresponds to $\phi_{\mu+1}(v)$ in [2], up to normalization.

Dual vertex operators are likewise defined as follows:
$\phi_{\mu}^{*}(v)=c_{n}^{-1} \oint \prod_{j=\mu+1}^{n-1} \frac{\mathrm{~d} z_{j}}{2 \pi \sqrt{-1} z_{j}} U_{\omega_{n-1}}\left(v-\frac{n}{2}\right) U_{-\alpha_{n-1}}\left(v_{n-1}\right) \cdots U_{-\alpha_{\mu+1}}\left(v_{\mu+1}\right)$

$$
\begin{align*}
& \times \prod_{j=\mu+1}^{n-1} f\left(v_{j}-v_{j+1}, \pi_{\mu j}\right) \\
= & c_{n}^{-1}(-1)^{n-1-\mu} \oint \prod_{j=\mu+1}^{n-1} \frac{\mathrm{~d} z_{j}}{2 \pi \sqrt{-1} z_{j}} U_{-\alpha_{\mu+1}}\left(v_{\mu+1}\right) \cdots U_{-\alpha_{n-1}}\left(v_{n-1}\right) U_{\omega_{n-1}}\left(v-\frac{n}{2}\right) \\
& \times \prod_{j=\mu+1}^{n-1} f\left(v_{j+1}-v_{j}, 1-\pi_{\mu j}\right) \tag{4.11}
\end{align*}
$$

where $v_{n}=v-\frac{n}{2}$, and

$$
c_{n}=x^{\frac{r-1}{r} \frac{n-1}{2 n}} \frac{g_{n-1}\left(x^{n}\right)}{\left(x^{2} ; x^{2 r}\right)_{\infty}^{n}\left(x^{2 r}, x^{2 r}\right)_{\infty}^{2 n-3}}
$$

The integral contour for z_{j}-integration encircles the poles at $z_{j}=x^{1+2 k r} z_{j+1}\left(k \in \mathbb{Z}_{\geqslant 0}\right)$, but not the poles at $z_{j}=x^{-1-2 k r} z_{j+1}\left(k \in \mathbb{Z}_{\geqslant 0}\right)$, for $\mu+1 \leqslant j \leqslant n-1$. Note that

$$
\begin{equation*}
\phi_{\mu}^{*}(v): \mathcal{F}_{l, k} \longrightarrow \mathcal{F}_{l, k-\bar{\varepsilon}_{\mu}} \tag{4.12}
\end{equation*}
$$

The operators $\phi_{\mu}(v)$ and $\phi_{\mu}^{*}(v)$ are dual in the following sense:

$$
\begin{equation*}
\sum_{\mu=0}^{n-1} \phi_{\mu}^{*}(v) \phi_{\mu}(v)=1 \tag{4.13}
\end{equation*}
$$

We notice that our dual vertex operator $\phi_{\mu}^{*}(v)$ coincides with $\bar{\phi}_{\mu+1}^{*}(n-1)\left(v-\frac{n}{2}\right)$ in [2].

4.3. Other representations

The present face model has the so-called σ-invariance:

$$
W\left[\left.\begin{array}{cc}
\sigma(c) & \sigma(d) \\
\sigma(b) & \sigma(a)
\end{array} \right\rvert\, v\right]=W\left[\left.\begin{array}{cc}
c & d \\
b & a
\end{array} \right\rvert\, v\right], \quad \sigma\left(\omega_{\mu}\right)=\omega_{\mu+1}
$$

The free field representation (4.8) is not invariant under σ-transformation, so that we have other free field representations:

$$
\begin{align*}
\phi_{i+\mu}(v)= & \oint \prod_{j=1}^{\mu} \frac{\mathrm{d} z_{j}}{2 \pi \sqrt{-1} z_{j}} U_{\omega_{1}}(v) U_{-\alpha_{1}}\left(v_{1}\right) \cdots U_{-\alpha_{\mu}}\left(v_{\mu}\right) \\
& \times \prod_{j=0}^{\mu-1} f\left(v_{j+1}-v_{j}, \pi_{i+j i+\mu}\right) \prod_{\substack{j=0 \\
j \neq \mu}}^{n-1}\left[\pi_{i+j i+\mu}\right]^{-1} \\
= & (-1)^{\mu} \oint \prod_{j=1}^{\mu} \frac{\mathrm{d} z_{j}}{2 \pi \sqrt{-1} z_{j}} U_{-\alpha_{\mu}}\left(v_{\mu}\right) \cdots U_{-\alpha_{1}}\left(v_{1}\right) U_{\omega_{1}}(v) \\
& \times \prod_{j=0}^{\mu-1} f\left(v_{j}-v_{j+1}, 1-\pi_{i+j i+\mu}\right) \prod_{\substack{j=0 \\
j \neq \mu}}^{n-1}\left[\pi_{i+j i+\mu}\right]^{-1} \tag{4.14}
\end{align*}
$$

where $v_{0}=v$ and $z_{j}=x^{2 v_{j}}$, and the integral contours are the same one as (4.8). In this representation the space of states $\mathcal{H}_{l, k}^{(i)}$ should be identified with $\mathcal{F}_{\sigma^{-i}(l), \sigma^{-i}(k)}$.

4.4. Free field realization of CTM Hamiltonian

Let

$$
\begin{align*}
H_{F} & =\sum_{m=1}^{\infty} \frac{[r m]_{x}}{[(r-1) m]_{x}} \sum_{j=1}^{n-1} \sum_{k=1}^{j} x^{(2 k-2 j-1) m} B_{-m}^{k}\left(B_{m}^{j}-B_{m}^{j+1}\right)+\frac{1}{2} \sum_{j=1}^{n-1} P_{\omega_{j}} P_{\alpha_{j}} \\
& =\sum_{m=1}^{\infty} \frac{[r m]_{x}}{[(r-1) m]_{x}} \sum_{j=1}^{n-1} \sum_{k=1}^{j} x^{(2 j-2 k-1) m}\left(B_{-m}^{j}-B_{-m}^{j+1}\right) B_{m}^{k}+\frac{1}{2} \sum_{j=1}^{n-1} P_{\omega_{j}} P_{\alpha_{j}} \tag{4.15}
\end{align*}
$$

be the CTM Hamiltonian on the Fock space $\mathcal{F}_{l, k}$ [14]. Then we have the homogeneity relation

$$
\begin{equation*}
\phi_{\mu}(z) q^{H_{F}}=q^{H_{F}} \phi_{\mu}\left(q^{-1} z\right) \tag{4.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{tr}_{\mathcal{F}_{l, k}}\left(x^{2 n H_{F}} G_{a}\right)=\frac{x^{n\left|\beta_{1} k+\beta_{2} l\right|^{2}}}{\left(x^{2 n} ; x^{2 n}\right)_{\infty}^{n-1}} G_{a} \tag{4.17}
\end{equation*}
$$

By comparing (3.20) and (4.17), we conclude that $\rho_{l, k}^{(i)}=G_{a} x^{2 n H_{F}}$ and $\mathcal{H}_{l, k}^{(i)}=\mathcal{F}_{l, k}$, where $k=a+\rho$.

The relation between $\rho^{(i)}$ and $\rho_{l, k}^{(i)}$ is as follows:

$$
\begin{equation*}
\rho^{(i)}=\sum_{\substack{k \equiv l+\omega_{i} \\(\bmod Q)}} T(u)_{\xi a} \frac{\rho_{l, k}^{(i)}}{b_{l}} T(u)^{\xi a} . \tag{4.18}
\end{equation*}
$$

4.5. Free field realization of tail operators

Consider (3.37) for $(c, b, a) \rightarrow\left(a, a+\bar{\varepsilon}_{0}+\bar{\varepsilon}_{\mu}, a-\bar{\varepsilon}_{\mu}\right)$, where $\mu \neq 0$. The coefficient L diverges when $u \rightarrow v$, so that we obtain the following necessary condition:

$$
\begin{equation*}
\prod_{\substack{j=1 \\ j \neq \mu}}^{n-1}\left[a_{0 j}\right] \Phi(v)_{a-\bar{\varepsilon}_{0}}^{a} \Lambda(v)_{a-\bar{\varepsilon}_{\mu}}^{a-\bar{\varepsilon}_{0}}+\prod_{\substack{j=1 \\ j \neq \mu}}^{n-1}\left[a_{\mu j}\right] \Phi(v)_{a-\bar{\varepsilon}_{\mu}}^{a} \Lambda(v)_{a-\bar{\varepsilon}_{\mu}}^{a-\bar{\varepsilon}_{\mu}}=0 \tag{4.19}
\end{equation*}
$$

By solving (4.19), we obtain
$\Lambda(u)_{a-\bar{\varepsilon}_{\mu}}^{a-\bar{\varepsilon}_{0}}=G_{\pi} \oint \prod_{j=1}^{\mu} \frac{\mathrm{d} z_{j}}{2 \pi \sqrt{-1} z_{j}} U_{-\alpha_{1}}\left(v_{1}\right) \cdots U_{-\alpha_{\mu}}\left(v_{\mu}\right) \prod_{j=0}^{\mu-1} f\left(v_{j+1}-v_{j}, \pi_{j \mu}\right) G_{\pi}^{-1}$,
where

$$
G_{\pi}:=\prod_{\kappa<\lambda}\left[\pi_{\kappa \lambda}\right] .
$$

Note that a free field representation of $\Lambda(u)_{a-\bar{\varepsilon}_{\mu}}^{a-\bar{\varepsilon}_{\nu}}$ for $v>0$ can be constructed on $\mathcal{F}_{\sigma^{-v}(l), \sigma^{-v}(k)}$.
In the following section, we need a tail operator $\Lambda(u)^{a-\sum_{j=1}^{N} \bar{\varepsilon}_{v_{j}}}{ }_{j=1}^{N} \bar{\varepsilon}_{\mu_{j}}$ in order to calculate n point functions. This type tail operator can be represented in terms of free bosons. In order to show this fact, let us introduce the symbol \lesssim as follows. We say $\mu \lesssim \nu$ if $0 \leqq \mu_{0} \leqq \nu_{0} \leqq n-1$ and $\mu=\mu_{0}(\bmod n), v=v_{0}(\bmod n)$.

It is clear that there exists $0 \leqq i \leqq n-1$ such that

$$
\sharp\left\{j \mid v_{j}+i \lesssim 0\right\}>0,
$$

and

$$
\sharp\left\{j \mid \mu_{j}+i \lesssim m\right\} \leqq \sharp\left\{j \mid v_{j}+i \lesssim m\right\},
$$

for every $0 \leqq m \leqq n-1$. In this case a free field representation of the tail operator $\Lambda(u)^{a-\sum_{j=1}^{N} \bar{\varepsilon}_{j=1}^{N} \bar{\varepsilon}_{\mu_{j}}}$ can be constructed on $\mathcal{F}_{\sigma^{-i}(l), \sigma^{-i}(k)}$.

5. Correlation functions

5.1. General formulae

Consider the local state probability (LSP) such that the state variable at j th site is equal to $\mu_{j}(1 \leqq j \leqq N)$, under a certain fixed boundary condition. In order to obtain LSP, it is convenient to divide the lattice into four transfer matrices and $2 N$ vertex operators as follows:

Here, the incoming vertex operator $\Phi_{\mu}^{\prime}(v)$ should be distinguished form the outgoing vertex operator $\Phi^{\mu}(v)$.

Let us consider the normalized partition function with fixed μ_{1}, \ldots, μ_{N} :

$$
\begin{align*}
P_{\mu_{1} \ldots \mu_{N}}^{(i)}\left(v_{1}, \ldots,\right. & \left.v_{N}\right):=\frac{1}{\chi^{(i)}} \operatorname{tr}_{\mathcal{H}^{(i)}}\left(A_{\mathrm{SW}}^{(i)}(v) \Phi_{\mu_{1}}^{\prime}\left(v_{1}\right) \cdots \Phi_{\mu_{N}}^{\prime}\left(v_{N}\right)\right. \\
& \left.\times A_{\mathrm{NW}}^{(i+N)}(v) A_{\mathrm{NE}}^{(i+N)}(v) \Phi^{\mu_{N}}\left(v_{N}\right) \cdots \Phi^{\mu_{1}}\left(v_{1}\right) A_{\mathrm{SE}}^{(i)}(v)\right) . \tag{5.1}
\end{align*}
$$

In the vertex operator approach [10], the LSP can be given by $\left.P_{\mu_{1} \ldots \mu_{N}}^{(i)}\left(v_{1}, \ldots, v_{N}\right)\right|_{v_{1}=\cdots=v_{N}=v}$. In what follows, we denote $P_{\mu_{1} \ldots \mu_{N}}^{(i)}=\left.P_{\mu_{1} \ldots \mu_{N}}^{(i)}\left(v_{1}, \ldots, v_{N}\right)\right|_{v_{1}=\ldots=v_{N}=v}$.

The YBE and the crossing symmetry imply the following relation [8]:

$$
\begin{equation*}
\Phi_{\mu}^{\prime}\left(v^{\prime}\right) A_{\mathrm{NW}}^{(i+1)}(v) A_{\mathrm{NE}}^{(i+1)}(v)=A_{\mathrm{NW}}^{(i)}(v) A_{\mathrm{NE}}^{(i)}(v) \Phi_{\mu}^{*}\left(v^{\prime}\right) \tag{5.2}
\end{equation*}
$$

Thus, one-point local state probability of the $(\mathbb{Z} / n \mathbb{Z})$-symmetric model can be given by

$$
\begin{aligned}
P_{j}^{(i)} & =\frac{1}{\chi^{(i)}} \operatorname{tr}_{\mathcal{H}^{(i)}}\left(\Phi_{j}^{*}(v) \Phi^{j}(v) \rho^{(i)}\right) \\
& =\frac{1}{\chi^{(i)}} \sum_{\substack{k=l+\omega_{i} \\
(\bmod Q)}} \operatorname{tr}_{\mathcal{H}_{l, k}^{(i)}}\left(T(u)^{\xi a} \Phi_{j}^{*}(v) \Phi^{j}(v) T(u)_{\xi a} \frac{\rho_{l, k}^{(i)}}{b_{l}}\right)
\end{aligned}
$$

$$
\begin{align*}
= & \frac{1}{\chi^{(i)}} \sum_{\substack{k \equiv l+\omega_{i} \\
(\bmod Q)}} \sum_{\mu, v} t_{j}^{*}(v-u)_{a+\bar{\varepsilon}_{v}}^{a} t^{j}(v-u)_{a+\bar{\varepsilon}_{v}-\bar{\varepsilon}_{\mu}}^{a+\bar{\varepsilon}_{v}} \\
& \times \operatorname{tr}_{\mathcal{H}_{l, k}^{(i)}}\left(\Phi^{*}(v)_{a+\bar{\varepsilon}_{v}}^{a} \Phi(v)_{a+\bar{\varepsilon}_{v}-\bar{\varepsilon}_{\mu}}^{a+\bar{\varepsilon}_{v}} \Lambda(u)_{a}^{a+\bar{\varepsilon}_{v}-\bar{\varepsilon}_{\mu}} \frac{\rho_{l, k}^{(i)}}{b_{l}}\right) . \tag{5.3}
\end{align*}
$$

Here in the third equality of (5.3), we use (3.35) and the fact that $\Phi_{j}^{*}(v), \Phi^{*}(v)_{a+\bar{\varepsilon}_{v}}^{a}$ and $t_{j}^{*}(v)_{a+\bar{\varepsilon}_{v}}^{a}$ are given by the fusion of $n-1 \Phi^{k}(v)^{\prime} \mathrm{s}, \Phi(v)_{a}^{a+\bar{\varepsilon}_{\mu}}$,s and $t^{k}(v)_{a}^{a+\bar{\varepsilon}_{\mu}}$, s , respectively.

In general, N-point local state possibility of this model can be given by

$$
\begin{align*}
P_{j_{N} \ldots j_{1}}^{(i)} & =\frac{1}{\chi^{(i)}} \operatorname{tr}_{\mathcal{H}^{(i)}}\left(\Phi_{j_{N}}^{*}(v) \cdots \Phi_{j_{1}}^{*}(v) \Phi^{j_{1}}(v) \cdots \Phi^{j_{N}}(v) \rho^{(i)}\right) \\
& =\frac{1}{\chi^{(i)}} \sum_{\substack{k \equiv l+\omega_{i} \\
(\bmod Q)}} \sum_{a_{1} \ldots a_{N}} t_{j_{N}}^{*}(v-u)_{a_{N}}^{a} \cdots t_{j_{1}}^{*}(v-u)_{a_{1}}^{a_{2}} t^{j_{1}}(v-u)_{a_{1}^{\prime}}^{a_{1}} \cdots t^{j_{N}}(v-u)_{a_{N}^{\prime}}^{a_{N-1}^{\prime}} \\
& \times \operatorname{tr}_{\mathcal{H}_{l, k}^{(i)}}\left(\Phi^{*}(v)_{a_{N}}^{a} \cdots \Phi^{*}(v)_{a_{1}}^{a_{2}} \Phi(v)_{a_{1}^{\prime}}^{a_{1}} \cdots \Phi(v)_{a_{N}^{\prime}}^{a_{N-1}^{\prime}} \Lambda(u)_{a}^{a_{N}^{\prime}} \frac{\rho_{l, k}^{(i)}}{b_{l}}\right), \tag{5.4}
\end{align*}
$$

where the second sum on the second line should be taken such that $\left(a, a_{N}\right), \ldots,\left(a_{2}, a_{1}\right)$ and $\left(a_{1}^{\prime}, a_{1}\right), \ldots,\left(a_{N}^{\prime}, a_{N-1}^{\prime}\right)$ are all admissible.

5.2. Spontaneous polarization

In this section, we reproduce the expression for spontaneous polarization [8]:

$$
\begin{equation*}
\langle g\rangle^{(i)}=\sum_{j=0}^{n-1} \omega^{j} P_{j}^{(i)}=\omega^{i+1} \frac{\left(x^{2} ; x^{2}\right)_{\infty}^{2}}{\left(x^{2 r} ; x^{2 r}\right)_{\infty}^{2}} \frac{\left(\omega x^{2 r} ; x^{2 r}\right)_{\infty}\left(\omega^{-1} x^{2 r} ; x^{2 r}\right)_{\infty}}{\left(\omega x^{2} ; x^{2}\right)_{\infty}\left(\omega^{-1} x^{2} ; x^{2}\right)_{\infty}}, \tag{5.5}
\end{equation*}
$$

by performing traces and n-fold integrals on (5.3). In [8], expression (5.5) was obtained by solving a system of difference equations, the quantum Knizhnik-Zamolodchikov equations of level $-2 n$.

First we replace $a+\bar{\varepsilon}_{v}$ by a for simplicity:

$$
\begin{align*}
P_{j}^{(i)}=\frac{1}{\chi^{(i)}} & \sum_{\substack{k \equiv l+\omega_{i+1} \\
(\bmod Q)}} \sum_{\mu, v} t_{j}^{*}(v-u)_{a}^{a-\bar{\varepsilon}_{v}} t^{j}(v-u)_{a-\bar{\varepsilon}_{\mu}}^{a} \\
& \times \operatorname{tr}_{\mathcal{H}_{l, k}^{(i+1)}}\left(\Phi(v)_{a-\bar{\varepsilon}_{\mu}}^{a} \Lambda(u)_{a-\bar{\varepsilon}_{v}}^{a-\bar{\varepsilon}_{v}} \frac{\rho_{l, k-\bar{\varepsilon}_{v}}^{(i)}}{b_{l}} \Phi^{*}(v)_{a}^{a-\bar{\varepsilon}_{v}}\right) . \tag{5.6}
\end{align*}
$$

We note that

$$
\begin{equation*}
\sum_{j=0}^{n-1} \omega^{j} t_{j}^{*}(v-u)_{a}^{a-\bar{\varepsilon}_{v}} t^{j}(v-u)_{a-\bar{\varepsilon}_{\mu}}^{a}=\frac{\left[v-u+a_{\mu v}\right]_{\omega}}{[v-u]} \prod_{\substack{j=0 \\ j \neq v}}^{n-1} \frac{\left[a_{\mu j}\right]_{\omega}}{\left[a_{\nu j}\right]} \tag{5.7}
\end{equation*}
$$

where

$$
[v]_{\omega}=x^{\frac{v^{2}}{r}-v} \Theta_{x^{2 r}}\left(\omega x^{2 v}\right) .
$$

Thus, the spontaneous polarization can be reduced as

$$
\langle g\rangle^{(i)}=\frac{1}{\chi^{(i)}} \sum_{\mu=0}^{n-1}\langle g\rangle_{\mu}^{(i)},
$$

where

$$
\begin{aligned}
&\langle g\rangle_{\mu}^{(i)}=\sum_{\substack{k \equiv l+\omega_{i+1} \\
(\bmod Q)}} \sum_{v=0}^{n-1} \frac{\left[v-u+a_{\mu \nu}\right]_{\omega}}{[v-u]} \prod_{\substack{j=0 \\
j \neq \nu}}^{n-1} \frac{\left[a_{\mu j}\right]_{\omega}}{\left[a_{\nu j}\right]} \operatorname{tr}_{\mathcal{H}_{l, k}^{(i+1)}} \\
& \times\left(\Phi(v)_{a-\bar{\varepsilon}_{\mu}}^{a} \Lambda(u)_{a-\bar{\varepsilon}_{v}}^{a-\bar{\varepsilon}_{\mu}} G_{a-\bar{\varepsilon}_{v}} \Phi^{*}(v+n)_{a}^{a-\bar{\varepsilon}_{v}} \frac{x^{2 n H_{l, k}^{(i+1)}}}{b_{l}}\right) .
\end{aligned}
$$

When $\mu=0$, in order to calculate the operator product $\Phi(v)_{a-\bar{\varepsilon}_{0}}^{a} \Lambda(u)_{a-\bar{\varepsilon}_{v}}^{a-\bar{\varepsilon}_{0}} G_{a-\bar{\varepsilon}_{v}}$ $\Phi^{*}(v+n)_{a}^{a-\bar{\varepsilon}_{v}}$, the following operator product formulae are useful:

$$
\begin{align*}
& c_{n}^{-1} U_{\omega_{1}}(v) U_{-\alpha_{1}}\left(v_{1}\right) \cdots U_{-\alpha_{n-1}}\left(v_{n-1}\right) U_{\omega_{n-1}}\left(v+\frac{n}{2}\right) \\
&= x^{-\frac{n-1}{2} \frac{r-1}{r}}\left(x^{2} ; x^{2 r}\right)_{\infty}^{n}\left(x^{2 r} ; x^{2 r}\right)_{\infty}^{2 n-3} z^{-\frac{r-1}{n r}} \prod_{j=0}^{n-1} z_{j}^{-\frac{r-1}{r}} \frac{\left(x^{2 r-1} z_{j+1} / z_{j} ; x^{2 r}\right)_{\infty}}{\left(x z_{j+1} / z_{j} ; x^{2 r}\right)_{\infty}} \\
& \times: U_{\omega_{1}}(v) U_{-\alpha_{1}}\left(v_{1}\right) \cdots U_{-\alpha_{n-1}}\left(v_{n-1}\right) U_{\omega_{n-1}}\left(v+\frac{n}{2}\right): \tag{5.8}
\end{align*}
$$

where $z_{0}=z$, and $z_{n}=x^{n} z$. Using (5.8) we have the following trace formulae:

$$
\begin{align*}
\operatorname{tr}_{\mathcal{H}_{l, k}^{(i+1)}}\left(c_{n}^{-1} U_{\omega_{1}}(v)\right. & \left.U_{-\alpha_{1}}\left(v_{1}\right) \cdots U_{-\alpha_{n-1}}\left(v_{n-1}\right) U_{\omega_{n-1}}\left(v+\frac{n}{2}\right) x^{2 n H_{l, k}^{(i+1)}}\right) \\
= & x^{n\left(\frac{r-1}{r}\left|k^{2}\right|-2\langle k, l\rangle+\frac{r}{r-1}|l|^{2}\right)} x^{2 \frac{r-1}{r} \sum_{j=1}^{n-1} a_{0 j}\left(v_{j+1}-v_{j}-\frac{1}{2}\right)-2 \sum_{j=1}^{n-1} \xi_{0 j}\left(v_{j+1}-v_{j}-\frac{1}{2}\right)} \\
& \times\left(x^{2 n} ; x^{2 n}\right)_{\infty}\left(x^{2 r} ; x^{2 r}\right)_{\infty}^{2 n-3} \frac{\left(x^{2} ; x^{2 n}, x^{2 r}\right)_{\infty}^{n}}{\left(x^{2 r+2 n-2} ; x^{2 n}, x^{2 r}\right)_{\infty}^{n}} \\
& \times \prod_{j=0}^{n-1} \frac{\left(x^{2 r-1} z_{j+1} / z_{j} ; x^{2 n}, x^{2 r}\right)_{\infty}\left(x^{2 r+2 n-1} z_{j} / z_{j+1} ; x^{2 n}, x^{2 r}\right)_{\infty}}{\left(x z_{j+1} / z_{j} ; x^{2 n}, x^{2 r}\right)_{\infty}\left(x^{2 n+1} z_{j} / z_{j+1} ; x^{2 n}, x^{2 r}\right)_{\infty}} . \tag{5.9}
\end{align*}
$$

Let us denote the rhs of (5.9) by $A_{l, k}^{(i)}\left(v ; v_{1}, \ldots, v_{n-1}\right)$. Then we have

$$
\begin{align*}
&\langle g\rangle_{0}^{(i)}=\frac{1}{b_{l}} \sum_{\substack{k \equiv l+\omega_{i+1} \\
(\bmod Q)}} \prod_{0<j<k}\left[a_{j k}\right] \sum_{v=0}^{n-1} \frac{\left[v-u+a_{0 v}\right]_{\omega}}{[v-u]} \oint_{C_{v}} \prod_{j=1}^{n-1} \frac{\mathrm{~d} z_{j}}{2 \pi \sqrt{-1}} \\
& \times \prod_{\substack{j=0 \\
j \neq v}}^{n-1} \frac{\left[a_{0 j}\right]_{\omega}}{\left[a_{v j}\right]} f\left(v_{j+1}-v_{j}, 1-a_{v j}\right) A_{l, k}^{(i)}\left(v ; v_{1}, \ldots, v_{n-1}\right) . \tag{5.10}
\end{align*}
$$

Here, the integral contour C_{v} is chosen such that

$$
\left|z_{j}\right|= \begin{cases}x^{j}(|z|+j \varepsilon) & (1 \leqq j \leqq v) \\ x^{j}(|z|-(n-j) \varepsilon) & (v+1 \leqq j \leqq n-1)\end{cases}
$$

where $\varepsilon>0$ is a very small positive number.
Let us denote the rhs of (5.10) by $H_{l}^{(i)}$. As noted in the previous section, the trace on $\mathcal{H}_{l, k}^{(i)}$ should be taken on $\mathcal{F}_{\sigma^{-\mu}(l), \sigma^{-\mu}(k)}^{(i)}$ for $\mu>0$. Thus, $\langle g\rangle_{\mu}^{(i)}$ can be reduced to $H_{\sigma^{-\mu}(l)}^{(i)}$. Let

$$
B_{l, k}^{(i)}(v, u):=x^{n\left(\frac{r-1}{r}\left|k^{2}\right|-2\langle k, l|+\frac{r}{r-1}|l|^{2}\right)} x^{2 a_{0 n-1}(v-u)} \tilde{G}_{a}, \quad \tilde{G}_{a}=\prod_{j=1}^{n-1}\left[a_{0 j}\right]_{\omega} \prod_{0<j<k}\left[a_{j k}\right] .
$$

Consider the following sum,

$$
S^{(i)}(v, u):=\frac{[0]_{\omega}}{[v-u]} \sum_{\mu=0}^{n-1} \sum_{\substack{k=l+\omega_{i+1} \\(\bmod Q)}} B_{\sigma^{-\mu}(l), \sigma^{-\mu}(k)}^{(i)}(v, u),
$$

and take the limit $u \rightarrow v^{2}$. Then we have
$\lim _{u \rightarrow v} S^{(i)}(v, u)=\omega^{i+1} b_{l} \frac{\left(\omega x^{2 r} ; x^{2 r}\right)_{\infty}\left(\omega^{-1} x^{2 r} ; x^{2 r}\right)_{\infty}}{\left(x^{2 r} ; x^{2 r}\right)_{\infty}^{2}} \frac{\left(x^{2} ; x^{2}\right)_{\infty}\left(x^{2 n} ; x^{2 n}\right)_{\infty}^{n}}{\left(\omega ; x^{2}\right)_{\infty}\left(\omega^{-1} x^{2} ; x^{2}\right)_{\infty}}$.
This can be confirmed by comparing the series expansion in x of both sides order by order.
Here we cite the sum formula from [2]:

$$
\begin{equation*}
\sum_{\nu=0}^{n-1} \prod_{\substack{j=0 \\ j \neq v}}^{n-1} \frac{f\left(v_{j+1}-v_{j}, 1-\pi_{\nu j}\right)}{\left[\pi_{\nu j}\right]}=0 \tag{5.12}
\end{equation*}
$$

This can be derived by applying Liouville's second theorem to the following elliptic function:

$$
F(w)=\prod_{j=0}^{n-1} \frac{\left[v_{j+1}-v_{j}-\frac{1}{2}+w-\pi_{j}\right]}{\left[v_{j+1}-v_{j}-\frac{1}{2}\right]\left[w-\pi_{j}\right]} .
$$

On equation (5.10), the contour for z_{1}-integral is common for all v except for $v=0$. Thus, by using (5.12), $H_{l}^{(i)}$ can be evaluated by the residue at $z_{1}=x^{1+2 u} \rightarrow x^{1} z$. The resulting ($n-2$)-fold integral has the same structures of both the integrand and the contour as the original ($n-1$)-fold one, except for the number of integral variables by one. Thus, we can repeat this evaluation procedure $n-1$ times to find

$$
\begin{equation*}
H_{l}^{(i)} \sim \frac{1}{[v-u]} \frac{1}{b_{l}} \frac{B_{l, k}^{(i)}}{\left(x^{2 n} ; x^{2 n}\right)_{\infty}^{n-1}}, \tag{5.13}
\end{equation*}
$$

at $u \sim v$. Substituting (5.11) and (5.13) into

$$
\begin{equation*}
\langle g\rangle^{(i)}=\frac{1}{\chi^{(i)}} \sum_{\mu=0}^{n-1} H_{\sigma^{-\mu}(l)}^{(i)}, \tag{5.14}
\end{equation*}
$$

we reproduce the expression for the spontaneous polarization (5.5) originally obtained in [8].

6. Concluding remarks

In this paper, we constructed a free field representation method in order to obtain correlation functions of Belavin's $(\mathbb{Z} / n \mathbb{Z})$-symmetric model. The essential point was to find a free field representation of the tail operator $\Lambda_{a}^{a^{\prime}}$, the nonlocal operator which intertwines the $(\mathbb{Z} / n \mathbb{Z})$-symmetric model and $A_{n-1}^{(1)}$ model. As a consistency check, we perform ($n-1$)-fold integrals and traces for the one-point function to reproduce the expression of the spontaneous polarization originally obtained in [8].

There are some related works concerning the eight-vertex model and its higher spin version. A bootstrap approach for the eight-vertex model was presented in [15]. The vertex operators of the eight-vertex model with some special values of r were directly bosonized in [16]. A free field representation method for form factors of the eight-vertex model was constructed in [17]. A higher spin generalization of the free field representation method was achieved in [18]. As for the $(\mathbb{Z} / n \mathbb{Z})$-symmetric model, it is important to consider the extension to the form factor problem or the application to the fused model. We wish to address these problems in future.
${ }^{2}$ Belavin's $(\mathbb{Z} / n \mathbb{Z})$-symmetric model does not have the parameter u so that all the physical quantities should be independent of u. Thus, we set $u \rightarrow v$ here, in order to avoid some difficulty.

Acknowledgments

We would like to thank K Hasegawa, R Inoue, M Jimbo, H Konno, M Lashkevich, T Miwa, A Nakayashiki, M Okado, Ya Pugai, J Shiraishi and Y Yamada for discussion and their interest in the present work. This work was supported by grant-in-aid for Scientific Research (C) 19540218 from the Japan Society for the Promotion of Science.

References

[1] Belavin A A 1981 Dynamical symmetry of integrable quantum systems Nucl. Phys. B 180 189-200
[2] Asai Y, Jimbo M, Miwa T and Pugai Ya 1996 Bosonization of vertex operators for the $A_{n-1}^{(1)}$ face model J. Phys. A.: Math. Gen. 29 6595-616
[3] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (London: Academic)
[4] Lashkevich M and Pugai L 1998 Free field construction for correlation functions of the eight vertex model Nucl. Phys. B 516 623-51
[5] Lukyanov S and Pugai Ya 1996 Multi-point local height probabilities in the integrable RSOS model Nucl. Phys. B 473 631-58
[6] Jimbo M, Miwa T and Okado M 1988 Local state probabilities of solvable lattice models: an $A_{n}^{(1)}$ family Nucl. Phys. B 300 74-108
[7] Jimbo M, Miwa T and Nakayashiki A 1993 Difference equations for correlation functions of the eight-vertex model J. Phys. A: Math. Gen 26 2199-209
[8] Quano Y-H 1993 Spontaneous polarization of the \mathbb{Z}_{n}-Baxter model Mod. Phys. Lett. A 8 3363-75
[9] Richey M P and Tracy C A $1986 \mathbb{Z}_{n}$ Baxter model: symmetries and the Belavin parametrization J. Stat. Phys. 42 311-48
[10] Jimbo M and Miwa T 1994 Algebraic Analysis of Solvable Lattice Models (CBMS Regional Conf. Series in Mathematics vol 85) (Providence, RI: American Mathematical Society)
[11] Koyama Y 1994 Staggered polarization of vertex models with $U_{q}(\widehat{s l}(n))$-symmetry Commun. Math. Phys. 164 277-91
[12] Feigin B L and Frenkel E V 1996 Quantum \mathcal{W}-algebras and elliptic algebras Commun. Math. Phys. 178 653-78
[13] Awata H, Kubo H, Odake S and Shiraishi J 1996 Quantum \mathcal{W}_{N} algebras and Macdonald polynomials Commun. Math. Phys. 179 401-16
[14] Fan H, Hou B-Y, K-j Shi and W-1 Yang 1997 Bosonization of vertex operators for the Z_{n}-symmetric Belavin model J. Phys. A: Math. Gen. 30 5687-96
[15] Quano Y-H 2002 Bootstrap equations and correlation functions for the Heisenberg XYZ antiferromagnet J. Phys. A: Math. Gen. 35 9549-72
[16] Shiraishi J 2004 Free field constructions for the elliptic algebra $\mathcal{A}_{q, p}\left(\widehat{\mathfrak{s t}_{2}}\right)$ and Baxter's eight-vertex model Int. J. Mod. Phys. A 19 363-80
[17] Lashkevich M 2002 Free field construction for the eight-vertex model: representation for form factors Nucl. Phys. B 621 587-621
[18] Kojima T, Konno H and Weston R 2005 The vertex-face correspondence and correlation functions of the fusion eight-vertex model: I. The general formalism Nucl. Phys. B 720 348-98

